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The electrochemical poli:'hing with simultaneous shape changes of anodes was studied. A theory 
was derived based on the knowledge of basic electrochemical parameters and the solution of the 
Laplace equation. To this purpose, the finite element method and the finite difference method 
with a double transformation of the inter-electrode region were employed. Only the former 
method proved well and can therefore be recommended for different geometries. 

The problem dealt with in the present work is analogous to electrochemical machin­
ingl-4. The finite element method was used in the calculations, since of the known 
methods of solution of the Laplace equation it is most advantageous for our cases -7. 

For comparison, the calculations were done by the finite difference method with 
a double transformation of the interelectrode space4 to a rectangle. The sharpening 
of the edges of thin metal sheets occurs in electrochemical polishing of objects from 
stainless steel and is made use of in sharpening surgical tools; the electrolytes are 
the same as those used in electrochemical polishing. 

The aim of the present work was to derive a theory of the sharpening process 
and to compare the calculated shape of the anode with that found experimentally. 
In addition, it was of interest to compare different calculation methods as to their 
suitability. 

THEORETICAL 

During electrochemical polishing of metals with direct current, the shape of the 
cathode is constant, whereas the anode dissolves to some extent and its shape changes. 
A model system (Fig. 1) consists of a thin plate anode of stainless steel with two 
parallel copper plate cathodes on either side embedded in an insulating material 
to form a plane surface. The electrode system is immersed in an aqueous solution 
of 20 wt.% H 2S04 and 60 wt.% H 3P04 tempered at 70°C. The gradual changes of the 
anode shape with time can be simulated by the following sequence of calculations. 
-------- -------- ~------------------------
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1) Calculation of the potential distribution between the cathode and the anode. 
2) Calculation of the local current density at the anode. 3) For a chosen time step 
.t\T, the loss of the metal due to anodic dissolution is calculated from the law of Fara­
day. Since oxygen evolution proceeds in addition to the metal dissolution, the cor­
responding current efficiency is taken into account. The loss of the anode metal 
is used to calculate changes in the coordinates of the points at the surface, y(x, y, z), 
which are shifted in the direction normal to the surface. Thus, a description of the 
new anode surface is obtained, and this the more accurately the smaller the time step 
.t\T. 4) The new shape of the anode surface is approximately described by a finite set 
of points (Xi' Yi' Zi)' i = 1,2, ... , N. 5) Return to step 1). Calculations according 
to this algorithm were done by two methods: a) The finite element methodS - lO 

was used to calculate the potential distribution in the interelectrode space in the 
original system of X, y-coordinates. b) The finite difference method3 .4. If the grid 
points were fixed, we should have to examine their location at the boundary after 
every change of the anode shape and calculate their distances from the neighbouring 
grid points. The method of calculation of potentials at the boundary would be very 
complicated, not to speak about programming, and therefore we used a double 
transformation of the interelectrode space enabling us to preserve the coordinates 
of all points during the whole calculation. Therefore, the form of the boundary 
conditions for the potentials need not be changed either . 

. For the model system in Fig. 1, considering the central electrode region, i.e. small 
values of z, we may assume that the system properties are constant in a certain region 
along the Z axis (Fig. 2). Hence, the potential in this region is rather accurately de-
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FIG. 1 

Scheme of model system with coordinate 
axes, A stainless anode, K copper cathode. 
Shaded areas are covered with an insulating 
layer, P(O,O,O) origin of coordinates, Ax 
anode thickness 
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FIG. 2 

Cross section through model system in the 
plane z = 0 and boundary conditions. 
A anode, K cathode, P(O,O) origin of coordi­
nates 
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scribed by the Laplace equation in two dimensions 

(1) 

Since the boundaries of the system are electrically insulated, the boundary conditions 
on them are o({J/ox = 0, o({J/oy = 0 (except for the electrodes). Since the system 
is symmetrical with respect to the plane x = 0, it is sufficient to solve Eq. (1) for one 
half of the system, e.g. for x ~ O. Thus, a new boundary is formed (Fig. 3, line 
1-5 and 4-8) on which the condition of symmetry (04)!ox)x=o = 0 applies, where 4> 
denotes any property of the system. 

In solving Eq. (1) in the space mentioned (Fig. 3) by the finite element methodS -10, 

we insert grid points in it to form triangular elements in which an approximate 
solution will be calculated. We use the method of weighted residues: Eq. (1) is multi­
plied by a weight function w(x, y) and integrated over the whole region Q considered. 
Thus, 

(2) 

By using Green's theoremll and the boundary conditions, Eq. (2) gives 

r (O({J ow + o({J ow) dQ = 0 • 
In ox ox oy oy 

(3) 

(The integral over the boundaries ofthe system is equal to zero.) 

At this point, we introduce M base functions Fj(x, y) (M is the total number 
of grid points) and assume that the solution at any grid point K can be approximated 
as 

M 

({JK = L ujFj , 

FIG. 3 

Dimensions, polar angles, and coordinate 
axes in the interelectrode space. Cross section 
in the plane z = 0 (Fig. 1) rotated by 90° 
with respect to Fig. 2. Lower edge of anode 
corresponds to y = - C, upper edge to y = 

= C. A anode, K cathode 

j=1 

Collection Czechoslovak Chem. Commun. [Vol. 49] [19841 

(4) 



1270 Novak, Rousar : 

where U j denotes unknown coefficients. The weight function WK at the grid point K 
is assumed to be of the form 

(5) 

The base functions Fj(x, y) are chosen so that at the grid point K we have F j = 0 
for j * K and FK = 1 (i.e. F j = bjK, where bjK is Kronecker's delta). Hence, at the 
grid points we have UK = qJK' Further, the base functions are defined so that in the 
elements only those functions are different from zero which attain the value of 1 
in the apex of the element. Other base functions are in the elements identically equal 
to zero. For the solution of Eq. (3), it is simplest to choose the nonzero F j functions 
in the elements as polynomials of the first degree. 

By introducing Eqs (4) and (5) into Eq. (3), we obtain an equation for the unknown 
coefficients U j (which are under the given assumptions numerically equal to the poten­
tials at the grid points) 

(6) 

A local matrix is obtained for the grid points of the element considered. By combining 
the local matrices for the whole region Q, we obtain a system of M linear equations, 
the solution of which gives an approximation of the potential distribution in the 
interelectrode space in the form (4). 

The boundary conditions involving the electrode polarization, i.e. qJ A,K = 
= qJ(j A,K)' are used as follows. The potentials on the electrode surface are estimated, 
the Laplace equation (3) is solved, and from its solution the current density j in each 
point is calculated as 

(7) 

where "E denotes the electrolyte conductivity. The potential gradient is calculated 
from the differentiated equation (4). 

The electrode potential corresponding to a given current density j is calculated 
from the Tafel equation 

(8) 

(9) 

Here, U denotes the terminal voltage, Er the equilibrium potential, and a and b 
constants with subscripts A, K referring to anode and cathode. 
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In further calculations, we take a proportional part from the calculated electrode 
potential 

s+ 1 N C* + s (1 C*) <fJA.K = <fJA.K <fJA.K - • (10) 

Superscript N refers to the newly calculated potential value, s denotes the iteration 
sequence, and C* is an empirical constant, which may be modified during the cal­
culations. In our case, its values were in the interval from 0·01 to 0'5. 

The potential values <fJ~~i are now used as new boundary conditions for the solu­
tion of the Laplace equation. The iteration is repeated until the potentials at the 
electrode surfaces converge with an error less than 10-4 V. 

At this point, the change of the anode shape is calculated. We assume that the 
current density at the electrode surface is constant during a short time interval ~T, 
so that the shift of the anode surface along the normal, ~n (cm), can be calculated 
as 

(11) 

where PI is the current efficiency in the anodic metal dissolution 

Since the finite element method using polynomials of the first degree gives a con­
stant current density on the whole side of a triangular element (compare Eqs (4) 
and (7», the change of the anode shape is calculated so that the side of the element 
lying at the anode is shifted by ~n along the normal to the anode surface. New grid 
points at the electrode surface are then obtained as intersections of the shifted sides 
of the triangles lying next to one another. 

When the values of ~T and thus the shape changes are sufficiently small, the errors 
in the calculations are also small. The above calculation of the new anode shape 
corresponds to the Euler integration method. 

With the method of finite differences using a double transformation, the procedure 
was already described4 • The Laplace equation (1) is transformed into polar coordina­
tes rand w 

(12) 

A part of the border of the interelectrode space (1-2-3-4 in Fig. 3) is described 
by a curve r = pew), and another part (5-6-7-8 in Fig. 3) by a curve r = a(w). 
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New coordinates e and '1 are then defined as 

.. __ r(w) - a(w) , e = w, ./ 
P( w) - a( w ) 

(13), (14) 

where e E (- tn, + 1n) and '1 E (0, I). The potential cp can then be expressed 
as function of the new variables ljI(e, 11)' so that ljI[e(r, w), '1(r, w)] = cp(r, w). The 
interelectrode space is transformed to a rectangle (in the coordinates e and '1) and 
the Laplace equation (12) takes the form 

+ 2 011 02lj1 + (! 011 + ! 0211) oljl = 0 . 
r2 ow oe 011 r or r2 ow2 011 

(15) 

Here, r is expressed from Eq. (14). The transformed equation (15) is solved by the 
overrelaxation method using finite differences. A two-dimensional nonequidistant 
grid is placed in the interelectrode space and the derivatives are approximated 
by finite-difference formulae 3 ,4 with an error of O(h2). Asymmetrical difference 
formulae are used in calculating the current density at the boundaries. 

Iterative calculation of the potential values at a grid point (i, j) is carried out 
by the successive overrelaxation method using the general relation 

,/,S+ 1 _ ,/,' + RS * 'i'i.j - 'i'i·j ri,j i'jP • (16) 

Superscript s or s + 1 denotes the order number of the iteration. The residues 
R~'j are calculated by introducing the s-th potential values into the left-hand side 
of Eq. (15) where the derivatives are expressed by the difference formulaes. 

Convergence of potentials ljIs was achieved by the following choice of the relaxa­
tion factor ri,j 

where h = Min [(ei+1 - 0, (ei - ei-l)] and 9 = Min [(11j+1 - 11j), (11j - '1j-1)]. 
The meaning of the functions G 1 to G4 is obvious from the comparison of Eq. (15) 
with the following Eq. (18). 
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The coefficient p* in Eq. (16) is an empirical constant which ensures and accelerates 
the convergence. It is preferable to use its maximum value at which the system still 
converges at a given instant. In our case, p* was in the interval (0,8,1,5). 

The method of calculating the shape changes of the anode is analogous to the 
case of the finite element method. The current density values are calculated from 
Eq. (7) in combination with (13) and (14). The finite difference method, in contrast 
to the other method, gives the current density values only at the grid points at the 
electrode surface. The shift of the points Lln (according to Eq. (11)) is used to cal­
culate the new coordinates of the grid points (x~, yf) at the electrode surface. These 
are recalculated to polar coordinates (w~, cx~), which in turn give by quadratic 
interpolation the polar coordinates of points on the new surface corresponding 
to the original grid points given beforehand. 

In total 100 grid points were used in the finite element method. The form of the 
coordinate grid with the triangular elements is shown in Fig. 5 (this was chosen ac­
cording to refp). The program system MKP-F was used12 and the subroutines 
were written in FORTRAN. The calculations were carried out on an ICL 4-72 
computer; the calculation of one step of the time change of the anode took about 
10 s of computer time. 

EXPERIMENTAL 

The model system shown in Fig. 1 was used also in the experiments. The anode was made of stain­
less steel Cr 18 Ni 10 and its chemical composition (in wt.%) was: C 0'085, Si 0'66, S 0·013, 
W 0'01, Cu 0'07, Mn 1-3, Cr 17'69, Ni 10'39, Mo 0'4, and Ti 0·56. Both cathodes were made 

FIG.4a 

Dimensions of anode (A) and cathode (K) 
in mm. Shaded areas are covered with an in­
sulating layer. Measurement by Trioptic 
apparatus was carried out along line p 

Collection Czechoslovak Chern. Commun. [Vol. 491 [1984] 

$d 
r--

0 ,..., 

K A K 
"-

7·5 1 7·5 

0 
N 

FIG.4b 

Cell dimensions in mm in cross section 



1274 Novak, Rousar : 

of copper. The electrode dimensions (in mm) prior to polishing are given in Fig. 4. The electrode 
system was immersed in a laboratory vessel with an electrolyte containing sulphuric acid, phospho­
ric acid, and water in the mass ratio 1 : 3 : 1; its conductivity was 29·02 n- I m -I and its tempera­
ture was kept at 70°C. The current density was 0·5 A/cm2 referred to the cathode surface area. 
The lower electrode edges were 20 mm above the cell bottom, the electrolyte level was 10 mm 
above the upper electrode edges, and the distance between the anode and cathode surfaces was 
7·5mm. 

The shape change of the anode was determined by measurement of its profile on a Trioptic 
apparatus (SIP, Switzerland). The thickness of the sample was measured on line p (Fig. 4a) 
at points 0·5 mm apart. 

Four experiments with the time of dissolution 20, 40, 80, and J20 min were done and the 
measured anode profiles are shown in Fig. 6. The values of the variables were as follows. Lengths 
(Fig. 3, 4a and 4b) A = 25 mm, B = 35 mm, C'~ 15 mm, D = 8 mm, Z = 0·5 mm. The total 
current was maintained at 1·5 A. The current efficiency PI was determined as 38~;;; (referred to the 
metal dissolution). For the given steel, MA/nA ~= 25'31. The constants in Eqs (8) and (9) were 
ErA = J·av, Er,K = -0,4 V, aA = 1·503 V, b A ,- 0·218 V, aK -= 0'39 V, bK = 0'06 V. The density 
of the anode metal (! A = 7·83 g/cm3 • The changes in the anode shape were calculated at 
time steps~, == 60 s. 

DISCUSSION 

The anode profiles after 20, 40, 80, and 120 min calculated by the finite element 
method are shown in Fig. 6 together with experimental points. It is seen that the 

o 

FIG. 5 

Position of grid points in the finite element 
method at time, =, 0 

FIG. 11 

Anode profiles at different times of polishing. 
1 ,== 0; 2 20 min; 3 40 min; 4 80 min; 
5 120 min. Crosses denote experimental 
points, curves were calculated by the finite 
element method 
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agreement between theory and experiments is good, the maximum difference being 
about 5% of the thickness of the original sample along the x axis. For T = 120 min, 
the difference between theory and experiment is about 10% of the sample length 
in the y direction. The differences are due to calculation errors on one hand (the 
finite element method gives results the error of which is of the order of percent) 
and to a scatter of experimental results for four different dissolution times (Fig. 6) 
amounting to a few percent on the other hand. Another source of errors is the as­
sumption of constant efficiency, which in reality changes to some extent with changing 
current density. This effect is most important at the edges of the anode, where the 
local current density is most different from the average. 

In the finite-difference overrelaxation method, a 31 x 15 coordinate grid was 
used and all parameters were based on experimental data. However, the anode shape 
calculated did not correspond to reality; it showed three waves whose amplitude 
was after 80 min more than twice as large as the sample thickness. Thus, the calcula­
tions were useless. The reason for the failure consists in the use of the double trans­
formation. In the finite-difference method, an approximately equidistant coordinate 
grid must be used. The back transformation into Cartesian coordinates results in con­
centrating the grid points at the electrode center. At the edges, where the process 
of sharpening takes place, no more than two grid points are located, which of course 
does not ensure the numerical stability of the calculation. 

It can be concluded that the finite element method is preferable for the theory 
of electrochemical polishing with a complicated form of electrodes and interelectrode 
space. The accuracy of the calculated electrode dimensions is 5 -10%, which is suf­
ficient in practice. The finite difference method with double transformation of the 
interelectrode space fails in such cases. 

TIle authors are indebted to Dr R. Zitny, Technical university, Prague, for making available the 
MKP-F program system, by which the finite element method programming was facilitated. 

LIST OF SYMBOLS 

a, " 
A,B,C 
C* 

D 

Er 

F 

F j 

1I 

G,-G4 

h 
j 

MA 

constants of Tafel equation (V) 
system dimensions (m) 
constant 
system dimension (m) 
equilibrium potential (V) 

Faraday's constant (96487 elmo]) 
base functions 
grid step along '1 axis 
functions in Eq. (18) 
grid step along'; axis 
current density (A/m2 ) 

molar mass of anode metal (kg/mol) 
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nA number of transferred electrons in anodic dissolution 
An shift of anode surface along normal (m) 
PI current efficiency in metal dissolution 
p* multiplicative constant 
r radius vector (m) 
ri,j relaxation factor 
Ri,j residue 

multiplicative coefficient 

w 
terminal voltage of electrolyser (V) 
weight function 

x,y,z 
Ax 

Cartesian coordinates (m) 
anode thickness (m) 
system dimension (m) Z 

rt.,P 
KE 

curves corresponding to system boundaries (m) 
electrolyte conductivity (0 - 1 m -1) 

transformed r coordinate 1'/ 
(lA density of anode metal (kg/m3 ) 

transformed co coordinate e 
time (s) 
potential in Cartesian or polar coordinates (V) 
potential in e and 1'/ coordinates (V) 
region of solution 

OJ polar angle 

Subscripts: A anode, i,j, K summation index, K cathode, n normal component. Superscripts: 
N new value in iteration, s order number of iteration. 
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